# Convex Sets *Definition. Convex combination:* Given $m$ points in $\RR^n$ denoted by $x_i$ for $i=1,\ldots,m$, $x$ is a convex combination of the $m$ points if it can be written as: \begin{equation} x = \sum_{i=1}^m \lambda_ix_i \end{equation} where $\lambda_i\geq 0$ and \begin{equation} \sum_{i=1}^m\lambda_i=1 \end{equation} *Definition. Convex set:* A set $C\subseteq\RR^n$ is convex if the convex combination of any two points in $C$ belongs to $C$. *Definition. Convex hull:* The convex hull of a set $S$, denoted by $\text{conv}(S)$, is the set of all convex combinations of points in $S$. *Definition. Affine combination:* $x$ is an affine combination of $x_1$ and $x_2$ if it can be written as: \begin{equation} x=\lambda_1x_1+\lambda_2x_2 \end{equation} *Definition. Affine set:* A set $C\subseteq\RR^n$ is affine if the affine combination of any two points in $C$ belongs to $C$. *Definition. Cone (nonnegative) combination:* Cone combination of two points $x_1$ and $x_2$ is a point $x$ that can be written as: \begin{equation} x=\theta_1x_1+\theta_2x_2 \end{equation} with $\theta_1\geq 0$ and $\theta_2\geq 0$. *Definition. Convex cone:* A set $S$ is a convex cone, if it contains all convex combinations of points in the set. *Definition. Hyperplane:* A hyperplane is a set of the form $\{x|a^\text{T}x=b\}$ with $a\neq 0$. *Definition. Halfspace:* A halfspace is a set of the form $\{x|a^\text{T}x\leq b\}$ with $a\neq 0$. *Definition. Polyhedron:* A polyhedron is the intersection of finite number of hyperplanes and halfspaces. A polyhedron can be written as: \begin{equation} \mathcal{P}=\{x| Ax \preceq b, Cx=d \} \end{equation} where $\preceq$ denotes componentwise inequality. *Definition. Euclidean ball:* A ball with center $x_c$ and radius $r$ is defined as: \begin{equation} B(x_c,r)=\{x| \|x-x_c\|_2\leq r\}=\{x| x=x_c+ru, \|u\|_2\leq r\} \end{equation} *Definition. Ellipsoid:* An ellipsoid is defined as: \begin{equation} \{x | (x-x_c)^\text{T}P^{-1}(x-x_c)\leq 1\} \end{equation} where $P$ is a positive definite matrix. It can also be defined as: \begin{equation} \{x| x=x_c+Au, \|u\|_2\leq r\} \end{equation} # Generalized inequalities *Definition. Proper code:* A cone is proper if it is closed (contains its boundary), solid (has nonempty interior) and pointed (contains no lines). The nonnegative orthant of $\mathbb{R}^n$, $\{x|x\in\mathbb{R}^n,x_i\geq 0, i=1,\ldots,n \}$ is a proper cone. Also the cone of positive semidefinite matrices in $\mathbb{R}^{n\times n}$ is a proper cone. *Definition. Generalized inequality:* A generalized inequality is defined by a proper cone $K$: \begin{equation} x\preceq_K y \Leftrightarrow y-x\in K \end{equation} \begin{equation} x\prec_K y \Leftrightarrow y-x\in \text{interior}(K) \end{equation} In this context, we deal with the following inequalities: - The inequality on real numbers is defined based on the proper cone of nonnegative real numbers $K=\mathbb{R}_+$. - The componentwise inequality on real vectors in $\mathbb{R}^n$ is defined based on the nonnegative orthant $K=\mathbb{R}^n_+$. - The matrix inequality is defined based on the proper cone of positive semidefinite matrices $K=S^n_+$.