Generalized linear fractional programΒΆ

A linear fractional program is defined as (LFP):

\[\begin{split}\begin{align} \text{minimize }&f_0(x)\nonumber\\ \text{subject to }&a_i^\text{T}x\leq b_i,\ i=1,\ldots,m\nonumber\\ &h_i^\text{T}x = g_i,\ i=1,\ldots,p \end{align}\end{split}\]

with \(f_0(x)=\frac{c^\text{T}x+d}{e^\text{T}x+f}\) and \(\text{dom}f_0(x)=\{x|e^\text{T}x+f > 0\}\). The problem (ref{LFP}) can be rewritten as:

\[\begin{split}\begin{align} \text{minimize }&\frac{c^\text{T}x+d}{e^\text{T}x+f}\nonumber\\ \text{subject to }&e^\text{T}x+f > 0\nonumber\\ &a_i^\text{T}x\leq b_i,\ i=1,\ldots,m\nonumber\\ &h_i^\text{T}x = g_i,\ i=1,\ldots,p \end{align}\end{split}\]

is a quasilinear (both quasiconvex and quasiconcave) optimization problem. To solve the problem using the bisection method, we need to write it as:

\[\begin{split}\begin{align} \text{minimize }&t\nonumber\\ \text{subject to }&c^\text{T}x+d\leq t(e^\text{T}x+f)\nonumber\\ &e^\text{T}x+f > 0\nonumber\\ &a_i^\text{T}x\leq b_i,\ i=1,\ldots,m\nonumber\\ &h_i^\text{T}x = g_i,\ i=1,\ldots,p \end{align}\end{split}\]

For a fixed \(t\), the above problem is a LP feasibility problem. Therefore, the bisection method can be used to find the smallest possible \(t\) within acceptable accuracy.

Another approach is introduce auxiliary variables \(y\) and \(z\):

\[\begin{split}\begin{align} y =& \frac{x}{e^\text{T}x+f}\nonumber\\ z =& \frac{1}{e^\text{T}x+f} \end{align}\end{split}\]

Then the optimization problem (ref{LFP}) can be written as the following LP problem:

\[\begin{split}\begin{align} \text{minimize }&c^\text{T}y+dz\nonumber\\ \text{subject to }&z > 0\nonumber\\ &e^\text{T}y+fz=1\nonumber\\ &a_i^\text{T}y\leq b_iz,\ i=1,\ldots,m\nonumber\\ &h_i^\text{T}y = g_iz,\ i=1,\ldots,p \end{align}\end{split}\]

Therefore, linear fractional programs can be converted to convex optimization problems.

A closely related class of optimization problems is the generalized linear fraction problems formulated as (GLFP):

\[\begin{split}\begin{align} \text{minimize }&f_0(x)\nonumber\\ \text{subject to }&a_i^\text{T}x\leq b_i,\ i=1,\ldots,m\nonumber\\ &h_i^\text{T}x = g_i,\ i=1,\ldots,p \end{align}\end{split}\]

where:

\begin{equation} f_0(x)=\max_{i=1,\ldots,r} \frac{c_i^\text{T}x+d_i}{e_i^\text{T}x+f_i} \end{equation} and the domain of \(f_0(x)\) is defined as:

\[\begin{equation} \text{dom}f_0(x)=\{x|e_i^\text{T}x+f_i > 0, \text{for }i=1,\ldots,r\} \end{equation}\]